Search results for "INCLUSIVE PRODUCTION"

showing 10 items of 16 documents

Inclusive B-meson production at small p_T in the general-mass variable-flavor-number scheme

2015

We calculate the cross section for the inclusive production of B mesons in pp and ppbar collisions at next-to-leading order in the general-mass variable-flavor-number scheme and show that a suitable choice of factorization scales leads to a smooth transition to the fixed-flavor-number scheme. Our numerical results are in good agreement with data from the Tevatron and LHC experiments at small and at large transverse momenta.

Particle physicsPhysics and Astronomy (miscellaneous)TevatronFOS: Physical scienceslow [transverse momentum]01 natural sciencesCross section (physics)High Energy Physics - Phenomenology (hep-ph)Factorization0103 physical sciencesscattering [p p]Order (group theory)B mesonddc:530Batavia TEVATRON Collinclusive production [B]factorization [scale]010306 general physicsnumerical calculationsNuclear ExperimentEngineering (miscellaneous)Variable (mathematics)PhysicsLarge Hadron Colliderscattering [anti-p p]higher-order [correction]010308 nuclear & particles physicsHigh Energy Physics::Phenomenologycalculated [total cross section]Transverse planeHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment1 [higher-order]correction [total cross section]
researchProduct

Inclusive D-Meson Production at the LHC

2012

I present predictions for the inclusive production of $D$ mesons at the CERN LHC in the general-mass variable-flavor-number scheme at next-to-leading order. Numerical results are compared to data where available, and uncertainties to scale variations, parton distribution functions and charm mass are discussed. I point out that measurements at large rapidity have the potential to pin down models of intrinsic charm.

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)CERN LHC Collmass [charm]PhysicsHigh Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::ExperimentNuclear Experimentdistribution function [parton]numerical calculationsinclusive production [D]1 [higher-order]
researchProduct

Limits on neutral Higgs boson production in the forward region in $pp$ collisions at $\sqrt{s} = 7$ TeV

2013

Limits on the cross-section times branching fraction for neutral Higgs bosons, produced in p p collisions at root s = 7 TeV, and decaying to two tau leptons with pseudorapidities between 2.0 and 4.5, are presented. The result is based on a dataset, corresponding to an integrated luminosity of 1.0 fb(-1), collected with the LHCb detector. Candidates are identified by reconstructing final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. A model independent upper limit at the 95% confidence level is set on a neutral Higgs boson cross-section times branching fraction. It varies from 8.6 pb for a Higgs boson mass of 90 GeV to 0.7 pb for a Higgs bos…

GravitacióSEARCH; MSSM; LHCHadronStandard-model Higgs boson7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Teoria quànticaNuclear ExperimentQCBosonPhysicsHiggs physicsQuantum field theoryHiggs bosonProduction (computer science)Física nuclearLHCHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified leptons photons or other nonhadronic particlesParticle Physics - ExperimentGravitationParticle physicsTeoria quàntica de campsNuclear and High Energy PhysicsFOS: Physical sciencesStandard-model Higgs bosons; Supersymmetric Higgs bosons; Hadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified leptons photons or other nonhadronic particlesHadronsPartícules (Física nuclear)Standard ModelSEARCH0103 physical sciences010306 general physicsLarge Hadron Collider (France and Switzerland)Standard-model Higgs bosonsMuonHadron-Hadron Scattering010308 nuclear & particles physicsBranching fractionComputer Science::Information RetrievalHadron-Hadron Scattering; Higgs physicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsHiggs physicSupersymmetric Higgs bosonSupersymmetric Higgs bosonsQuantum theoryHadron-Hadron Scattering; Higgs physics; Nuclear and High Energy PhysicsHigh Energy Physics::ExperimentMSSMLepton
researchProduct

Finding the Higgs boson through supersymmetry

2009

6 pages, 7 figures.-- PACS nrs.: 12.60.Jv; 13.85.Ni; 14.60.Pq; 14.80.Cp.-- ArXiv pre-print available at: http://arxiv.org/abs/0809.1637

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderSupergravity[PACS] Non-standard-model Higgs bosonsElectroweak interactionBosón de HiggsHigh Energy Physics::Phenomenology[PACS] Supersymmetric unified modelsFOS: Physical sciencesFísicaSupersymmetry[PACS] Neutrino mass and mixingSupersymmetry breaking[PACS] Hadron-induced inclusive production with identified hadrons (energy > 10 GeV)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)SupersimetríaHiggs bosonHigh Energy Physics::ExperimentNeutrino oscillationMinimal Supersymmetric Standard Model
researchProduct

Precision measurement of D meson mass differences

2013

Using three- and four-body decays of D mesons produced in semileptonic b-hadron decays, precision measurements of D meson mass differences are made together with a measurement of the D-0 mass. The measurements are based on a dataset corresponding to an integrated luminosity of 1.0 fb(-1) collected in pp collisions at 7 TeV. Using the decay D-0 -> K+K-K-pi(+), the D-0 mass is measured to be M(D-0) = 1864.75 +/- 0.15 (stat) +/- 0.11 (syst) MeV/c(2). The mass differences M(D+) - M(D-0) = 4.76 +/- 0.12 (stat) +/- 0.07 (syst) MeV/c(2), M(D-s(+)) - M(D+) = 98.68 +/- 0.03 (stat) +/- 0.04 (syst) MeV/c(2) are measured using the D-0 -> K+K-pi(+)pi(-) and D-(s)(+) -> K+K-pi(+) modes.

Hadronic decays of charmed mesonsParticle physicsTeoria quàntica de campsGravitacióNuclear and High Energy PhysicsMesonHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesHadrons01 natural sciencesHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadrons; Leptonic semileptonic and radiative decays of bottom mesons; Charmed mesons (|C|>0 B=0); Hadronic decays of charmed mesonsPartícules (Física nuclear)Settore FIS/04 - Fisica Nucleare e SubnucleareLuminosityHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesD mesonLeptonic semileptonic and radiative decays of bottom meson[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TOOLTeoria quàntica010306 general physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronsNuclear ExperimentQCHadron-Hadron Scattering; Nuclear and High Energy PhysicsPhysicsHadron-Hadron Scattering010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronRelativity (Physics)DecayRelativitat (Física)Quantum field theoryFIS/01 - FISICA SPERIMENTALEQuantum theoryLeptonic semileptonic and radiative decays of bottom mesonsDECAY; TOOLFísica nuclearHigh Energy Physics::ExperimentCharmed mesons (|C|>0 B=0)DECAYParticle Physics - ExperimentGravitationJournal of High Energy Physics
researchProduct

PRODUCTION CHARACTERISTICS OF K-0 AND LIGHT MESON RESONANCES IN HADRONIC DECAYS OF THE Z(0)

1995

An analysis of inclusive production of K0and the meson resonances K*±(892), ρ0(770), f0(975) and f2(1270) in hadronic decays of the Z0is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0decay. The average multiplicities of f0(975) for scaled momentum, xp, in the range 0.05≤xp≤0.6 and of f2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. The f0(975) and ρ0(770)xp-spectra have similar shapes. The f2(1270)/ρ0(770) ratio increases with xp. The average multiplicities…

Particle physicsMesonPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOElectron–positron annihilationHadron01 natural sciencesJET FRAGMENTATION250 GEV/CPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]multiplicityENERGY REGION010306 general physicsParton showerEngineering (miscellaneous)Detectors de radiacióDELPHI. inclusive production; K0 meson; multiplicity; MontecarloPhysicsRange (particle radiation)Momentum (technical analysis)010308 nuclear & particles physicsMultiplicity (mathematics)E+E-ANNIHILATIONINCLUSIVE PRODUCTIONZ0 DECAYSMontecarloParticle accelerationLUND MONTE-CARLO; E+E-ANNIHILATION; INCLUSIVE PRODUCTION; JET FRAGMENTATION; Z0 DECAYS; P INTERACTIONS; VECTOR-MESONS; ENERGY REGION; 250 GEV/C; 360 GEV/C360 GEV/CP INTERACTIONSK0 mesonDELPHI. inclusive productionVECTOR-MESONSParticle Physics - Experiment
researchProduct

Forward $J/\psi$ and very backward jet inclusive production at the LHC

2018

In the spirit of Mueller-Navelet dijet production, we propose and study the inclusive production of a forward $J/\psi$ and a very backward jet at the LHC as an observable to reveal high-energy resummation effects \`a la BFKL. We obtain several predictions, which are based on the various mechanisms discussed in the literature to describe the production of the $J/\psi$, namely, NRQCD singlet and octet contributions, and the color evaporation model.

HADRONIC COLLISIONSdijet: productionParticle physicsHEAVY FLAVOR PRODUCTIONOctetOCTET QUARKONIA PRODUCTIONJet (particle physics)01 natural sciencesComputer Science::Digital Libraries114 Physical sciencesDECAYSHigh Energy Physics - ExperimentNuclear physicsPomeron[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesquantum chromodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Resummation010306 general physicsMUELLER-NAVELET JETSBFKL equationoctetQuantum chromodynamicsPhysicsPOMERONLarge Hadron Colliderquantum chromodynamics: nonrelativisticcolor: evaporationta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyVERTEXObservablesingletQCDHigh Energy Physics - PhenomenologyJ/psi mesonsCERN LHC Collforward productionjet: inclusive productionresummation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]PHOTON SCATTERINGProduction (computer science)[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentJ/psi(3100): production
researchProduct

Measurement of the chi(b) (3 P) mass and of the relative rate of chi(b1) (1 P) and chi(b2) (1 P) production

2014

The production of $\chi_b$ mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of $\sqrt{s}=7$ and $8$ TeV and corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $\chi_b$ mesons are identified through their decays to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ using photons that converted to $e^+e^-$ pairs in the detector. The $\chi_b(3P)$ meson mass, and the relative prompt production rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ mesons as a function of the $\Upsilon(1S)$ transverse momentum in the $\chi_b$ rapidity range 2.0< $y$<4.5, are measured. Assuming a mass splitting between the $\chi_{b1}(3P)$ an…

Quantum chromodynamics: Experimental testPhysics::Instrumentation and DetectorsNuclear TheoryQuarkoniumFlavor physics; Hadron-Hadron Scattering; Quarkonium01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentLuminositySettore FIS/04 - Fisica Nucleare e Subnucleare14.40.PqFlavor physicsDECAY; UPSILON; PSI[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Flavor physics; Hadron-Hadron Scattering; Quarkonium; Nuclear and High Energy PhysicsPSINuclear ExperimentQCPhysicsPhysicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronParticle physicsLeptonic semileptonic and radiative decays of J/ψ Υ and other quarkoniaQuarkonium Hadron-Hadron Scattering Flavor physicsPhysical SciencesTransverse momentumFísica nuclearProduction (computer science)LHCParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsMesonLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsUPSILONHadronsNO13.20.Gd0103 physical sciencesRapiditySDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyHadron-Hadron Scattering010308 nuclear & particles physicsGran Col·lisionador d'HadronsLHCb12.38.QkFlavor physicHigh Energy Physics::ExperimentHeavy quarkonia13.85.NiFísica de partículesExperimentsDECAYProduction rate
researchProduct

Observation of charmonium pairs produced exclusively in $pp$ collisions

2014

A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of $3{\rm\ fb}^{-1}$ collected at centre-of-mass energies of 7 and 8 TeV, $J/\psi J/\psi$ and $J/\psi\psi(2S)$ pairs are observed, which have been produced in the absence of any other activity inside the LHCb acceptance that is sensitive to charged particles in the pseudorapidity ranges $(-3.5,-1.5)$ and $(1.5,5.0)$. Searches are also performed for pairs of P-wave charmonia and limits are set on their production. The cross-sections for these processes, where the dimeson system has a rapidity between 2.0 and 4.5, are measu…

Nuclear and High Energy PhysicsParticle physicsNuclear TheorydiffractionFOS: Physical sciencesLHCb - Abteilung HofmannHEAVY-ION COLLISIONSQCD diffraction charmoniaNOHigh Energy Physics - ExperimentLuminosityHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum chromodynamiccharmonia; diffraction; QCDcharmonia; diffraction; QCD; Nuclear and High Energy PhysicsRapiditySDG 7 - Affordable and Clean EnergyNuclear ExperimentQCPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyhep-ex12.38.-tParticle physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronHEAVY-ION COLLISIONS; 450 GEV/C; DIFFRACTION; LHCQCDCromodinàmica quànticaLHCbDifracció450 GEV/CPseudorapidityPhysics::Accelerator PhysicscharmoniaFísica nuclearHigh Energy Physics::ExperimentProduction (computer science)LHCHEAVYFísica de partículesExperiments13.85.NiDiffractionQuantum chromodynamicsParticle Physics - ExperimentJournal of Physics G: Nuclear and Particle Physics
researchProduct

Measurement of CP asymmetry in D 0 → K - K + and D 0 → π - πdecays

2014

Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $\pi^- \pi^+$ are measured using proton-proton collisions corresponding to $3\mathrm{\,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7\mathrm{\,Te\kern -0.1em V}$ and $8\mathrm{\,Te\kern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be \begin{align} \Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(\pi^-\pi^+) = (+0.14 \pm 0.16\mathrm{\,(stat)} \pm 0.08\mathrm{\,(syst)})\% \ . \nonu…

High Energy Physics::Lattice14.40.Lb01 natural sciencesLuminositySettore FIS/04 - Fisica Nucleare e SubnucleareFlavor physicsABSORPTIONPhysics::Chemical PhysicsNuclear ExperimentQCmedia_commonCharm physicsPhysicsHadronic decays of charmed mesonCharm physics; CP violation; Flavor physics; Hadron-Hadron ScatteringParticle physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronCharge conjugation parity time reversal and other discrete symmetrieFIS/01 - FISICA SPERIMENTALECP violation13.25.FtSCATTERING-AMPLITUDEFísica nuclearLHCParticle physicsCharm physicNuclear and High Energy PhysicsMesonmedia_common.quotation_subjectLHCb - Abteilung HofmannHadronsAsymmetryREGENERATIONTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSEARCH0103 physical sciencesPiSCATTERINGSCATTERING-AMPLITUDE; REGENERATION; ABSORPTION; SEARCHSDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyMuonHadron-Hadron Scattering010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsCharge (physics)LHCbFlavor physic11.30.ErHigh Energy Physics::ExperimentFísica de partículesExperiments13.85.NiCharmed mesons (|C|>0 B=0)FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
researchProduct